CHEMISTRY 11 AP – FORMAL CHARGE & VSEPR WORKSHEET

1) Assign formal charges to each atom in each of the following six structures for SCO. Predict which structure is favoured. Which is least likely to form? Explain.

$$\ddot{O} = C = \ddot{S}: \quad \ddot{O} - C = S: \quad O = C - \ddot{S}: \quad \ddot{O} = C = \ddot{S}: \quad \ddot{O} = C - \ddot{C} = C$$

$$\ddot{c} = 0 = \ddot{S}$$
: $\ddot{c} = 0 = S$: $\ddot{c} = 0 = S$: $\ddot{c} = 0 = \ddot{S}$:

- 2) Draw two structures for SO₃, one with an expanded octet and one without. You do not need to show resonance structures for the non-expanded form. Use formal charges to predict which structure is favoured.
- 3) Why do non-bonding or lone pair electrons attached to a central atom occupy more space than bonding electron pairs?
- 4) Consider the following Lewis structures. Would you expect these molecules to have the same shape or a different shape? Explain.

5) For each pair of columns, draw lines to connect the AX_mE_n notation on the left to the correct shape listed on the right. (The first one is done for you.)

AX _m E _n Notation	Molecular Shape	AX _m E _n Notation	Molecular Shape	
AX ₃	Bent	AX ₄ E	T-shaped	
AX ₂ E ₃	Trigonal bipyramidal	AX ₂ E	Octahedral	
AX ₄	Trigonal pyramidal	AX_3E_2	Square pyramidal	
AX ₃ E	Trigonal planar	AX ₆	Square planar	
AX_2E_2	Tetrahedral	AX ₅ E	Bent	
AX ₅	Linear	AX ₄ E ₂	Seesaw	

6) Consider the Lewis structures for methane and ammonia. Which molecule will have the smaller X – A - X bond angle and why?

7) Assume that all of the peripheral atoms are the same for each AX_mE_n category listed below and complete the following table. (Note that two different bond angles exist in an AX_5 molecule.)

AX _m E _n Category	AX ₂	AX3	AX4	AX5	AX ₂ E ₃	AX6	AX4E2
X – A – X Bond Angle							

8) Complete the following table:

Lewis Structure	AX _m E _n Notation	Shape of Molecule (Name and Diagram)
H 		
:0: ::::::::::::::::::::::::::::::::		
:F: :F: :F: :F:		
: F : . F :		

- 9) Draw Lewis structures for each of the following species and predict the resulting shapes.
 - (a) AsH₃
 - (b) I₃-
 - (c) NH₂-
 - (d) ClO₄-