Chemistry 11 AP - Formal Charge \& VSEPR Worksheet

1) Assign formal charges to each atom in each of the following six structures for SCO. Predict which structure is favoured. Which is least likely to form? Explain.
(a)

$$
0_{0}^{\bullet \bullet}=\sum_{0}^{\bullet}
$$

(b)

(c)
$: 0 \equiv \mathrm{C}$ —
(d)

$$
: \ddot{C}=0=\ddot{\mathrm{S}}:
$$

(e)
$: \ddot{C}-\mathrm{O} \equiv \mathrm{S}$:
(f)
$: C \equiv 0-\ddot{S}:$
2) Draw two structures for SO_{3}, one with an expanded octet and one without. You do not need to show resonance structures for the non-expanded form. Use formal charges to predict which structure is favoured.
3) Why do non-bonding or lone pair electrons attached to a central atom occupy more space than bonding electron pairs?
4) Consider the following Lewis structures. Would you expect these molecules to have the same shape or a different shape? Explain.

5) For each pair of columns, draw lines to connect the $A X_{m} E_{n}$ notation on the left to the correct shape listed on the right. (The first one is done for you.)

$\mathbf{A X}_{\mathbf{m}} \mathbf{E}_{\mathbf{n}}$ Notation	Molecular Shape	$\mathbf{A X}_{\mathbf{m}} \mathbf{E}_{\mathbf{n}}$ Notation	Molecular Shape
AX_{3}	Bent	$\mathrm{AX}_{4} \mathrm{E}$	T-shaped
$\mathrm{AX}_{2} \mathrm{E}_{3}$	Trigonal bipyramidal	$\mathrm{AX}_{2} \mathrm{E}$	Octahedral
AX_{4}	Trigonal pyramidal	$\mathrm{AX}_{3} \mathrm{E}_{2}$	Square pyramidal
$\mathrm{AX}_{3} \mathrm{E}$	Trigonal planar	AX_{6}	Square planar
$\mathrm{AX}_{2} \mathrm{E}_{2}$	Tetrahedral	$\mathrm{AX}_{5} \mathrm{E}$	Bent
AX_{5}	Linear	$\mathrm{AX}_{4} \mathrm{E}_{2}$	Seesaw

6) Consider the Lewis structures for methane and ammonia. Which molecule will have the smaller X -$\mathrm{A}-\mathrm{X}$ bond angle and why?

7) Assume that all of the peripheral atoms are the same for each $\mathrm{AX}_{\mathrm{m}} \mathrm{E}_{\mathrm{n}}$ category listed below and complete the following table. (Note that two different bond angles exist in an AX_{5} molecule.)

$\mathrm{AX}_{\mathrm{m}} \mathrm{E}_{\mathrm{n}}$ Category	$\mathbf{A X}_{2}$	AX_{3}	AX_{4}	AX_{5}	$\mathrm{AX}_{2} \mathrm{E}_{3}$	$\mathbf{A X}_{6}$	$\mathbf{A X}_{4} \mathbf{E}_{\mathbf{2}}$
X - A - X Bond Angle							

8) Complete the following table:

Lewis Structure	$\mathbf{A X}_{\mathbf{m}} \mathrm{E}_{\mathrm{n}}$ Notation	Shape of Molecule (Name and Diagram)

9) Draw Lewis structures for each of the following species and predict the resulting shapes.
(a) AsH_{3}
(b) $\mathrm{I}_{3}{ }^{-}$
(c) NH_{2}^{-}
(d) ClO_{4}^{-}
