CHEMISTRY 12 - Kw, PH AND POH WORKSHEET #2

1) What is the $[OH^{-}]$ in 0.025 M HCl? (1 mark)

$$HCI \longrightarrow H^{+} + CI^{-}$$
 $Kw = CH_{30}^{+}COH^{-}J$
 $0.025M$ $0.025M$ $0.025M$ $0.025M$ $0.025M$ $0.025M$ $0.025M$

2) Calculate the pH of 0.250 M Al(OH)₃. (2 marks)

$$pH + pOH = 14.00$$

 $\times + 0.125 = 14.00$
 $\times = 13.88$

3) Which of the following is possible for an acid?

	ACID STRENGTH	CONCENTRATION	рН
(A.)	strong	0.01 M	2.0
В.	weak	0.01 M	1.0
C.	strong	3 M	5.5
D.	weak	3 M	-0.5

Strong acid would ionize completely:

$$HA \longrightarrow H^+ + A^ 0.01M \longrightarrow 0.01M$$
 $PH = -log(H30^+) = -log(0.01) = 2.0$

4) What is the $[H_3O^+]$ in 200.0 mL of 0.0010 M KOH? (2 marks)

$$KOH \rightarrow K^{+} + OH^{-}$$
 $0.0010M$
 $VW = CH30+VOH^{-}$
 $VW = CH30+V$

5) Tomato juice has a pH of 4.20. Calculate the [H₃O⁺] and [OH⁻] in tomato juice. (2 marks)

6) A student records the pH of **0.1 M** solutions of two monoprotic acids:

Acid	рН	if strong, 100% ionization would
X	4.0	make $(H_{30}^{+}) = 0.1 \text{ M}$.
Y	2.0	$pH = -log(H_3O^{+})$ = $-log(O.1)$
		= 10

What can be concluded from the above data? (2 marks)

Since both acids have a pH > 1.0, they did not undergo

complete ionization : both are weak acids, with acid y

being a stronger weak acid

$$pH + pOH = 14.00$$
 $|3.62 + x| = 14.00$
 $|3.62 + x| = 0.38$

What is the mass of NaOH required to prepare 100.0 mL of NaOH (aq) that has a pH = 13.62?

(2 marks)

$$PH + POH = 14.00$$

$$|3.62 + x = 14.00$$

$$x = 0.38$$

$$PH = 10 - POH$$

$$= 10 - 0.38$$

$$0.42M$$

$$0.42M$$

$$= 0.42M$$

$$0.42M$$

$$0.42M$$

$$0.42M$$

$$0.42M$$

$$0.42M$$

$$0.42Mol \times \frac{0.42mol}{1/L} \times \frac{40.09}{1mol} = 1.79$$
is 3.5 x 10⁶ M. Calculate the [OH] (1 mark)

8) In a solution at 25°C, the
$$[H_3O^+]$$
 is 3.5 x 10^{-6} M. Calculate the $[OH^-]$. (1 mark)

$$K\omega = CH_3O^{+}XOH^{-}$$

 $1.0 \times 10^{-14} = (3.5 \times 10^{-6}) \times$
 $X = 2.9 \times 10^{-9} M$

9) The pH of pure water is 6.52 at 60°C. Calculate the [OH]. (2 marks)

$$[H_{3}O^{+}] = IO_{-6.52}$$

= IO_{-7}
= 3.0 × IO_{-7}

$$[H_3O^{+}] = IO_{-6.52}$$

= $IO_{-6.52}$
= $3.0 \times IO_{-7}$
= $3.0 \times IO_{-7}$
 $= 3.0 \times IO_{-7}$
Since H is pure water,
 $[H_3O^{+}] = [OH^{-}] : -7$
 $[OH^{-}] = 3.0 \times IO_{-7}$

10) Calculate the pH of 0.25 M Sr(OH)₂. (2 marks)

$$S_{1}(OH)_{2} \rightarrow S_{1}^{2+} + 2OH^{-}$$
 $OH = -log(OH^{-})$ $OH = 14.00$
 $OH = -log(OH^{-})$ $OH = 14.00$

$$poH = -log(OH^{-})$$

= $-log(O.SO)$
= 0.30

$$PH + POH = 14.00$$

 $X + 0.30 = 14.00$
 $X = 13.70$

11) Calculate the $[H_3O^+]$ in 100.0 mL of 0.0515 M KOH. (2 marks)

$$KOH \longrightarrow K^+ + OH^-$$

0.0515M 0.0515M

$$KOH \longrightarrow K^{+} + OH^{-}$$
 $SISM$
 $0.0SISM$
 $|.0 \times 10^{-14} = \times (0.0SIS)$
 $\times = |.9 \times 10^{-13} M | U$

12) What is the concentration of $Sr(OH)_2$ in a solution with a pH = 11.00? (2 marks)

$$pH + pOH = 14.00$$

 $11.00 + x = 14.00$
 $x = 3.00$

$$[OH^{-}] = 10^{-POH}$$

= $10^{-3.00}$
= 1.0×10^{-3}

$$PH + POH = 14.00 \qquad COH^{-1} = 10^{-POH} \qquad Sr(OH)_{2} = 10^{-2} = 10^{-3.00} \qquad Sr(OH)_{2} = 10^{-3.00} = 1.0 \times 10^{-3} = 1.0$$

13) What is the pOH of a 1.8 M HClO₄ solution? (2 marks)

$$HC104 \longrightarrow H^{+} + C104^{-}$$
 $pH = -log(Hs0^{+})$ $pH + pOH = 14.00$
 $1.8M$ $1.8M$ $= -log(1.8)$ $-0.26 + x = 14.00$
 $= -0.26$ (1) $x = 14.26$ (1)

14) Calculate the $[H_3O^+]$ in a solution with a $[OH^-]$ of 1.5 x 10^{-4} M. (1 mark)

$$K\omega = CH_3O^{+}VOH^{-}$$

 $1.0 \times 10^{-14} = X(1.5 \times 10^{-4})$
 $X = 6.7 \times 10^{-11}M$

15) What is the pOH of 0.2 M HNO₃? (2 marks)

16) Calculate the [H₃O⁺] in a 100.0 mL sample of 0.0800 M NaOH. (1 mark)

NaOH
$$\rightarrow$$
 Na⁺ + OH⁻ $\times = \text{CH}_{30} + \text{Y}_{0} + \text{O}_{1}$
0.0800M $\times = 1.3 \times 10^{-13} \text{M}$

17) Calculate the [H₃O⁺] of a solution with a pOH of 4.60. (2 marks)

$$PH + POH = 14.00$$

 $X + 4.60 = 14.00$
 $X = 9.400$

$$= 10^{-9.40}$$

$$= 4.0 \times 10^{-10}$$

18) Four monoprotic acids of the same concentration are labeled as follows:

SOLUTION	Label
A	$[OH^-] = 5.0 \times 10^{-11} M$
В	$[H^+] = 0.20 M$
С	pOH=11.30 M
D	pH = 1.20 M

B:
$$pH = -log(H_3O^+)$$

= $-log(0.20)$
= 0.700

List the four solutions in order of decreasing acidity. Use calculations to support your answer. (4 marks)

calculate pH for all acids to be able to compare them

A:
$$K\omega = CH_3O^{+}XOH^{-}J$$

 $1.0 \times 10^{-14} = \times (5.0 \times 10^{-11})$
 $\times = 2.0 \times 10^{-4}M$
 $PH = -log[H_3O^{+}J]$
 $= -log(2.0 \times 10^{-4})$
 $= 3.70 D$

In order of decreasing acidity means from most acidic (lowest pH) -> least acidic (highest pH):

B, D, C, A 0

19) At
$$10^{\circ}$$
C, $K_w = 2.95 \times 10^{-15}$.

(a) Determine the pH of water at 10°C. (3 marks)

$$2 H_{2}O(1) \rightleftharpoons H_{3}O^{+} + OH^{-}$$

$$K\omega = [H_{3}O^{+}][OH^{-}]$$

$$2.95 \times 10^{-15} = \chi^{2}$$

$$\chi = 5.43 \times 10^{-8}M^{1}$$

$$PH = -log(H_{3}O^{+})$$

$$= -log(5.43 \times 10^{-8})$$

$$= 7.265 \text{ D}$$

(b) State whether water at this temperature is acidic, basic or neutral, and explain. (1 mark)

20) Calculate the value of K_w for a sample of water with a pH = 7.30. (2 marks)

$$2 H_{2}O(1) \rightleftharpoons H_{3}O^{+} + OH^{-}$$

$$[H_{3}O^{+}] = IO_{-7.30}$$

$$= IO$$

$$= 5.0 \times IO^{-8}M$$

$$[H_{3}O^{+}] = COH^{-}$$

$$[H_{3}O^{+}] = COH^{-}$$

$$= 2.5 \times IO^{-15}O$$