CHEMISTRY 12 – HYDROLYSIS & TITRATIONS EXTRA PRACTICE

- 1) What is the net ionic equation for the hydrolysis of NH₄ClO₄? (1 mark)
- 2) What is the equilibrium constant expression for the predominant reaction between the hydrogen oxalate ion, HC₂O₄, and water? (1 mark)
- 3) Which of the following is true as a result of the predominant hydrolysis of NaHCO₃? (1 mark)

	Solution	Reason
A.	basic	$K_a > K_b$
B.	basic	$K_b > K_a$
C.	acidic	$K_a > K_b$
D.	acidic	$K_b > K_a$

- 4) Which of the following represents a basic salt solution? (1 mark)
 - NH₃ NH₄I KNO₃ Na₂CO₃
- 5) A chemist prepares a solution by dissolving the salt NaIO₃ in water.
 - a) Write the equation for the dissociation reaction that occurs. (1 mark)
 - b) Write the equation for the hydrolysis reaction that occurs. (1 mark)
 - c) Calculate the value of the equilibrium constant for the hydrolysis in part b). (1 mark)
- 6) Calculate the pH of 0.50 M NaF. (5 marks)
- 7) Calculate the initial concentration of an NH_4Cl salt solution that has a pH = 4.80. Begin by writing the equation for the predominant equilibrium reaction. (5 marks)
- 8) Consider the following reaction:

$$2 \operatorname{HCl}_{(aq)} + \operatorname{Ba}(OH)_{2(s)} \rightarrow \operatorname{BaCl}_{2(aq)} + 2 \operatorname{H}_2O_{(l)}$$

When 3.16 g samples of $Ba(OH)_2$ were titrated to the equivalence point with an HCl solution, the following data were recorded:

	Volume of HCl added
Trial 1	37.80 mL
Trial 2	35.49 mL
Trial 3	35.51 mL

Using the data, calculate the original [HCl]. **(4 marks)**

- 9) A 25.0 mL sample of the weak acid H₂S is titrated with 38.2 mL of 0.20 M KOH (a strong base). What is the concentration of the acid? (3 marks)
- 10) What mass of NaOH (s) is required to just neutralize 50.0 mL of 2.0 M H₂SO₄? Begin by writing the balanced equation for the neutralization reaction. **(3 marks)**

Solutions:

1) $NH_4^+_{(aq)} + H_2O_{(l)} \rightleftharpoons NH_3_{(aq)} + H_3O^+_{(aq)}$ 2) $K_a = \frac{\left[C_2O_4^{2-}\right]\left[H_3O^+\right]}{\left[HC_2O_4^{-}\right]}$ 3) $B_{4)} Na_2CO_3$

4) Na_2CO_3 5) a) $NaIO_{3(s)} \rightarrow Na^+_{(aq)} + IO_3^-_{(aq)}$ b) $IO_3^-_{(aq)} + H_2O_{(l)} \rightleftharpoons HIO_{3(aq)} + OH_{(aq)}$ c) $K_b = 5.9 \times 10^{-14}$ 6) 8.587) 0.45 M8) 1.04 M9) 0.15 M10) 8.0 g